

High Precision Measurement of the Proton Elastic Form Factor Ratio at Low $\boldsymbol{Q}^{\mathbf{2}}$

Xiaohui Zhan

Argonne National Lab
12 ${ }^{\text {th }}$ International Conference on Meson-Nucleon Physics and the Structure of the Nucleon

- Introduction
- E08-007
- Analysis
- Results \& Discussions
- Future Outlook \& Summary

Electron Elastic Scattering Formalism

- Pioneered by Hofstadter et. al at Stanford in 1950s, first proton form factor measurement reported in 1955.
- As theory for Strong force, QCD has been tested well in the asymptotic region, understanding hadron structure in confinement region still challenging.
- Dirac and Pauli form factors: $\mathrm{F}_{1}, \mathrm{~F}_{2}$

$$
\begin{aligned}
& J_{\text {hadronic }}^{\mu}=e \bar{u}\left(p^{\prime}\right)\left[\gamma^{\mu} F_{1}\left(Q^{2}\right)+\frac{i \sigma^{\mu v} q_{v}}{2 M} F_{2}\left(Q^{2}\right)\right] u(p) \\
& Q^{2}=-q^{2}
\end{aligned}
$$

single photon exchange
(Born approximation)

$$
\frac{d \sigma}{d \Omega}=\sigma_{M o t t} \frac{1}{1+\tau}\left\{F_{1}^{2}\left(Q^{2}\right)+\tau\left[F_{2}^{2}\left(Q^{2}\right)+2\left(F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right)\right)^{2} \tan ^{2} \frac{\theta_{e}}{2}\right]\right\}
$$

Sachs Form Factors

- Linear combination of F_{1} and F_{2}, Fourier transform of the charge (magnetization) densities in the Breit frame at non relativistic limit.

$$
\frac{d \sigma}{d \Omega}=\sigma_{\text {Mott }} \frac{1}{1+\tau}\left[G_{E}^{2}+\frac{\tau}{\mathcal{E}} G_{M}^{2}\right]
$$

$$
\begin{array}{ll}
\text { Electric: } & G_{E} \equiv F_{1}-\tau F_{2} \\
\text { Magnetic: } & G_{M} \equiv F_{1}+F_{2}
\end{array}
$$

- Early experiments found ~ dipole form ($Q^{2}<2 \mathrm{GeV}^{2}$), naively corresponds to an exponential shape in space.

$$
\begin{aligned}
& G_{D}\left(Q^{2}\right)=\left(1+\frac{Q^{2}}{0.71 G e V^{2}}\right)^{-2} \\
& \mu_{P} \frac{G_{E}}{G_{M}}=1
\end{aligned}
$$

Recoil Polarimetry

- Direct measurement of form factor ratios by measuring the ratio of the transferred polarization P_{t} and P_{l}.

$$
\begin{aligned}
& I_{0} P_{t}=-2 \sqrt{\tau(1+\tau)} G_{E} G_{M} \tan \frac{\theta_{e}}{2} \\
& I_{0} P_{I}=\frac{E_{e}+E_{e^{\prime}}}{M} \sqrt{\tau(1+\tau)} G_{M}^{2} \tan ^{2} \frac{\theta_{e}}{2} \\
& \frac{G_{E}}{G_{M}}=-\frac{P_{t}}{P_{I}} \frac{\left(E_{e}+E_{e^{\prime}}\right)}{2 M} \tan \frac{\theta_{e}}{2}
\end{aligned}
$$

Advantages:

- Only one measurement is needed for each Q^{2}.
- Much better precision than a cross section measurement.
- Complementary to XS measurements.
- Famous discrepancy between Rosenbluth and polarized measurement, mostly explained by 2- γ exchange.
(J. Arrington, et al., Phys. Rev. C 76035205 (2007))

- Small $Q^{2} \rightarrow$ larger length scale, closely related to the proton size.

J. Friedrich and Th. Walcher, Eur. Phys. J. A 17, 607 (2003)
- 2003 - Fit by Friedrich \& Walcher Eur. Phys. J. A17, 607 (2003):
- Smooth dipole form + "bump \& dip"
- All four FFs exhibit similar structure at small momentum transfer ($Q^{2} \sim 0.25 \mathrm{GeV}^{2}$).
- Proposed interpretation: effect of pion cloud.
- Improved EMFFs:
- Strange form factors through

PV

- Proton Zemach radius and hydrogen hyperfine splitting
- Proton charge RMS radius.

$$
\left\langle r_{E, M}^{2}\right\rangle=\frac{-6}{G_{E, M}(0)}\left[\frac{d}{d Q^{2}} G_{E, M}\left(Q^{2}\right)\right]_{Q^{2}=0}
$$

World Data

- Complementary to the high precision XS measurement at Mainz ($\mathbf{Q}^{2} \sim 0.003$ $-1 \mathrm{GeV}^{2}$).
- Bates BLAST result consistent with 1.

Crawford et al., Phys. Rev. Lett 98052301 (2007)

- Substantial deviation from unity is observed in LEDDEX (Ron et al.).
- Both data inconsistent with F\&W fit.
- New dedicated experiment E08-007.

LHRS

- Non-focusing Dipole
- A high precision (<1\%)
survey of the proton FF ratio.
- $8 Q^{2}$ data points: $0.3 \sim 0.7$ $(\mathrm{GeV} / \mathrm{c})^{2}$.
-Big acceptance.
- $\Delta \mathrm{p}: 200-900 \mathrm{MeV}$
- $\Delta \Omega: 96 \mathrm{msr}$
- PS + Scint. + SH
- $\Delta \mathrm{p} / \mathrm{p} 0: \pm 4.5 \%$,
- out-of-plane: $\pm 60 \mathrm{mrad}$
- in-plane: $\pm 30 \mathrm{mrad}$
- $\Delta \Omega$: 6.7 msr
- QQDQ
- Dipole bending angle 45°
- VDC+FPP
- $\mathrm{P}_{\mathrm{p}}: 0.55 \sim 0.93 \mathrm{GeV} / \mathrm{c}$

BigBite

BigBite Spectrometer

- Detect scattered electrons.
- Only elastic-peak blocks were in the trigger.
- Background minimized with tight elastic cut.

Scintillator

Pre-shower

Elastic Events Selection

- HRS acceptance cut:
- out of plane: +/- 60 mr
- in plane: +/-30 mr
- momentum: +/- $0.04\left(\mathrm{dp} / \mathrm{p}_{0}\right)$
- reaction vertex cut
- FPP cuts:
- scattering angle $\theta_{\text {fpp }} 5^{\circ} \sim 25^{\circ}$
- reaction vertex (carbon door)
- conetest cut

- Other cuts:

- Coin. Timing cut
- Coin. event type (trigger)
- single track event
- dpkin (proton angle vs.
momentum)
proton dpkin

Focal Plane Polarimeter (FPP)

Chamber 3 Chamber 4

- Left-right asymmetry gives the vertical component while the updown asymmetry gives the horizontal component.
- Need well determined scattering azimuthal angle $\phi_{\text {fop }}$, chamber alignment checked with straight through data.

Focal Plane Asymmetry

- Detection probability at focal plane with azimuthally angle $\phi_{t p p}$

$$
f^{ \pm}=\frac{1}{2 \pi} \xi\left[1 \pm A_{y}\left(\theta_{\text {tpp }}\right)\left(P_{x}^{t p p} \sin \left(\phi_{\text {tpp }}\right)-P_{y}^{t p p} \cos \left(\phi_{\text {tpp }}\right)\right)\right]
$$

- Helicity difference:

$f^{\text {diff }}=f^{+}-f^{-} \approx \frac{1}{\pi}\left[A_{y}\left(P_{x}^{\text {tpp }} \sin \left(\phi_{\text {tpp }}\right)-P_{y}^{\text {fpp }} \cos \left(\phi_{t p p}\right)\right)\right]=C \cos (\phi+\delta)$
$C=\frac{1}{\pi} A_{y} \sqrt{\left(P_{x}^{t p p}\right)^{2}+\left(P_{y}^{t p p}\right)^{2}}$
$\tan \delta=\frac{P_{y}^{\text {tpp }}}{P_{x}^{\text {tpp }}}$
- By dipole approximation:

$$
\left(R=\mu_{p} \frac{G_{E}}{G_{M}} \approx \sin \chi \frac{P_{x}^{f p p}}{P_{y}^{f p p}} \times K\right)
$$

(K: kinematic factor)

Spin Transport in HRS (COSY)

Systematic Budget

- Spin transport: OPTICS and COSY---major uncertainty (0.7 ~ 1.2%)
- Others negligible: FPP alignment, Al end cap contamination, VDC reconstruction, spectrometer settings, beam energy, charge asymmetry, pion contamination, etc.

E08-007 Final Results

- Agreement with independent analysis of Paolone et al. at $0.8 \mathrm{GeV}^{2}$.
- Slow decrease with Q^{2}. A few percent below typical expectations.
- No obvious indication of "Structure", inconsistent with F\&W fit.
- No obvious trend to rise quickly to unity at the lowest Q^{2} point.

Comparison with Models

Results with World Polarization Data

Global Fits

- Combined global fits (John Arrington).
- AMT fit (black) : include all previous data with TPE correction.
- New fit (red) : same procedure, include new data.
- Preliminary fits suggest lower $G_{\mathrm{E}}(\sim 2 \%)$.

Impacts I

- Strangeness form factor by PV: asymmetry arises from the interference between EM and neutral weak current.

$$
\begin{aligned}
A_{P V}= & -\frac{G_{F} Q^{2}}{4 \pi \alpha \sqrt{2}}\left[\left(1-4 \sin ^{2} \theta_{W}\right)-\frac{\varepsilon G_{E p}\left(G_{E n}+G_{E s}\right)+\tau G_{M p}\left(G_{M n}+G_{M s}\right)}{\varepsilon\left(G_{E p}\right)^{2}+\tau\left(G_{M p}\right)^{2}}\right. \\
& \left.-\frac{\left(1-4 \sin ^{2} \theta_{W}\right) \varepsilon^{\prime} G_{M p} G_{A}^{Z}}{\varepsilon\left(G_{E p}\right)^{2}+\tau\left(G_{M p}\right)^{2}}\right]
\end{aligned}
$$

$$
\begin{gathered}
\sigma \propto\left|\mathcal{M}_{\gamma}+\mathcal{M}_{Z}\right|^{2} \\
\mathcal{M}^{R}=\mathcal{M}_{\gamma}+\mathcal{M}_{Z}^{R} \\
\mathcal{M}^{L}=\mathcal{M}_{\gamma}+\mathcal{M}_{Z}^{L} \\
A_{P V}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}}=\frac{\left|\mathcal{M}^{R}\right|^{2}-\left|\mathcal{M}^{L}\right|^{2}}{\left|\mathcal{M}^{R}\right|^{2}+\left|\mathcal{M}^{L}\right|^{2}}
\end{gathered}
$$

- Rely on knowledge of EMFFs.
- With New FF parameterization, HAPPEX III results shift $\sim 0.5 \sigma$

$\mathrm{Q}^{\mathbf{2}}$	$\Delta \mathrm{A}$	$\Delta \mathrm{A} / \boldsymbol{\sigma}$	$\Delta \mathrm{A} / \mathrm{A}$	Exp.
0.38	-0.178	0.42	1.6%	GO FWD
0.56	-0.347	0.50	1.6%	G0 FWD
1.0	-0.414	0.30	0.8%	GO FWD
0.50	-0.299	0.50	1.7%	HAPPEX III
0.231	+0.038	0.12	0.2%	GO BCK
0.65	0.142	0.14	0.3%	GO BCK

Table: Difference in the extracted asymmetries.

Impacts II

- Proton Zemach radius:

$$
\begin{aligned}
& E_{h f s}=\left(1+\Delta_{Q E D}+\Delta_{h v p}^{p}+\Delta_{\mu v p}^{p}+\Delta_{\text {weak }}^{p}+\Delta_{S}\right) E_{F}^{p} \\
& \Delta_{S}=\underline{\Delta_{Z}}+\Delta_{R}^{p}+\Delta_{p o l}, \quad \Delta_{Z}=-2 \alpha Z \frac{m_{e} m_{p}}{m_{e}+m_{p}} r_{Z} \\
& r_{Z}=-\frac{4}{\pi} \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}}\left[G_{E}\left(Q^{2}\right) G_{M}\left(Q^{2}\right) /\left(1+\kappa_{p}\right)-1\right]
\end{aligned}
$$

- FFs at Low $Q^{2}\left(<1 \mathrm{GeV}^{2}\right)$ accounts for $>70 \%$ of r_{Z}, and also dominate the uncertainty.

Quantity	value (ppm)	uncertainty (ppm)
$\left(E_{\mathrm{hfs}}\left(e^{-} p\right) / E_{F}^{p}\right)-1$	1103.48	0.01
Δ_{QED}	1136.19	0.00
$\Delta_{\mu \mathrm{vp}}^{p}+\Delta_{\mathrm{hvp}}^{p}+\Delta_{\text {weak }}^{p}$	0.14	
Δ_{Z} (using [31])	-41.43	0.44
Δ_{R}^{p} (using [31])	5.85	0.07
$\Delta_{\text {pol }}$ (this work, using [31])	1.88	0.64
Total	1102.63	0.78
Deficit	0.85	0.78

Carlson, Nazaryan, and Griffioen, arXiv:0805.2603v1 (2009)

FFs	$r_{z}(\mathrm{fm})$	Δz	year
Dipole	1.025	-39.29	-
FW	1.049	-40.22	2003
Kelly	1.069	-40.99	2004
AS	1.091	-41.85	2007
AMT	1.080	-41.43	2007
New fit	1.075	-41.21	2009

Future Outlook

- E08007 analysis finalized.
- Publication in preparation.
- Updated paper for LEDEX (G. Ron et al.)

- Second half of the experiment (DSA) is tentatively scheduled in early 2012

$$
\mathrm{A}_{\text {phys }}=\frac{\mathrm{v}_{\mathrm{z}} \cos \theta^{\prime} \mathrm{G}_{\mathrm{M}}^{2}+\mathrm{v}_{\mathrm{x}} \sin \theta^{\prime} \cos \varphi^{\prime} \mathrm{G}_{\mathrm{E}} \mathrm{G}_{\mathrm{M}}}{\left(\varepsilon \mathrm{G}_{\mathrm{Ep}}^{2}+\tau \mathrm{G}_{\mathrm{Mp}}^{2}\right) /[\varepsilon(1+\tau)]}
$$

- Opportunity to see the FFR behavior at even lower Q^{2} (0.015$0.4 \mathrm{GeV}^{2}$) region.
- Third independent measurement, direct comparison with BLAST, examine any unknown systematic errors for previous measurements.
- Challenges: Solid polarized proton target \& effect of target field to septum magnets.

Summary

- Nucleon FFs are fundamental quantities describing the nucleon internal structure, and has been a longstanding subject of interest in nuclear and particle physics.
- pQCD not applicable at low momentum transfer region, precision FF measurements are needed for all the experimental accessible region to test various models.
- A new high precision measurement was conducted in Jefferson Lab Hall A at low Q^{2}, new results strongly deviate from unity, systematically lower than previous world data.
- While adding further constraints on various models, high precision data also have impacts to other physics quantities: proton Zemach radius, strange form factor through PV, etc.
- Future experiments accessing extremely lower Q^{2} are necessary, more "unexpected" results? ...

Acknowledgements

J. Arrington, D. Higinbotham, J. Glister, R. Gilman, S. Gilad, E. Piasetzky, M. Paolone, G. Ron, A. Sarty, S. Strauch and the entire E08-007 collaboration \&
Jefferson Lab Hall A Collaboration

E08-007 Collaboration

- Argonne National lab
- Jefferson Lab
- Rutgers University
- St. Mary's University
- Tel Aviv University
- UVa
- CEN Saclay
- Christopher Newport University
- College of William \& Mary
- Duke University
- Florida International University
- Institut de Physique Nuclaire d'Orsay
- Kent State University
- MIT
- Norfolk State University
- Nuclear Research Center Negev
- Old Dominion University
- Pacific Northwest National Lab
- Randolph-Macon College
- Seoul National University
- Temple University
- Universite Blaise Pascal
- University of Glasgow
- University of Maryland
- University of New Hampshire
- University of Regina
- University of South Carolina

Thank you!

Back up slides

Spin Transport in HRS

L.tr.tg_ph:L.tr.tg_dp

- Binning test for graphical cut.
- A rough check for existence of any possible background under elastic peak.
- No obvious indication of dependence on such variable.

COSY Spin Precession Matrix

- Different SP matrix were generated by changing the default settings in COSY:
- dipole radius, drift distances, quadrupoles alignment
- central bending angle: 5.5 mrad
- use COSY transport map to reconstruct target variables
- Uncertainties on target variables (OPTICS):
- dp: 0.001
- y_tg: 0.001 m
- ph_tg: 0.7~1.2 mrad
- th_tg: 1 mrad

Individual Form Factors

- With the extract ratio constraint, refit the world reduced cross section data.

Extraction of Polarization

- Full spin precession by COSY:
- differential algebra-based.
- defines the geometry and related setup of magnets.

$$
\binom{P_{x}^{f p p}}{P_{y}^{f p p}}=\left(\begin{array}{lll}
S_{x x} & S_{x y} & S_{x z} \\
S_{y x} & S_{y y} & S_{y z}
\end{array}\right)\left(\begin{array}{c}
P_{x}^{t g} \\
\eta h P_{y}^{t g} \\
\eta h P_{z}^{t g}
\end{array}\right)
$$

$$
S_{i j}=\sum_{k, l, m, n, p} C_{i j}^{k l m p} x^{\kappa} \theta^{\prime} y^{m} \phi^{n} \delta^{p}
$$

focal plane
target frame

- Weighted-sum:

$$
f(\phi)=\frac{1}{2 \pi} \epsilon\left(1+\lambda_{x} P_{x}^{t g}+\lambda_{y} h P_{y}^{t g}+\lambda_{z} h P_{z}^{t g}\right)
$$

$$
\begin{aligned}
& \lambda_{x}=A_{y}\left(S_{y x} \sin \phi-S_{x x} \cos \phi\right) \\
& \lambda_{y}=\eta A_{y}\left(S_{y y} \sin \phi-S_{x y} \cos \phi\right) \\
& \lambda_{z}=\eta A_{y}\left(S_{y z} \sin \phi-S_{x z} \cos \phi\right)
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{2 \pi} f(\phi) \lambda_{y} d \phi= & h P_{y}^{\operatorname{tg}} \int_{0}^{2 \pi} f(\phi) \lambda_{y}^{2} d \phi+ \\
& h P_{z}^{t g} \int_{0}^{2 \pi} f(\phi) \lambda_{y} \lambda_{z} d \phi+ \\
\int_{0}^{2 \pi} f(\phi) \lambda_{z} d \phi= & h P_{y}^{t g} \int_{0}^{2 \pi} f(\phi) \lambda_{y} \lambda_{z} d \phi+ \\
& h P_{z}^{\operatorname{tg}} \int_{0}^{2 \pi} f(\phi) \lambda_{z}^{2} d \phi .
\end{aligned}
$$

Impacts III

- Isoscalar \& Isovector FFs (important for Lattice QCD):

$$
F_{i}^{s}=\frac{1}{2}\left(F_{i}^{p}+F_{i}^{n}\right), F_{i}^{v}=\frac{1}{2}\left(F_{i}^{p}-F_{i}^{n}\right)
$$

- Plots show fractional change in IS and IV FFs by using the new parameterization vs. the old parameterization.

