

High Precision Measurement of the Proton Elastic Form Factor Ratio at Low Q^2

> Xiaohui Zhan Argonne National Lab

12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon

- Introduction
- E08-007
- Analysis
- Results & Discussions
- Future Outlook & Summary

Electron Elastic Scattering Formalism

• As theory for Strong force, QCD has been tested well in the asymptotic region, understanding hadron structure in confinement region still challenging.

• Dirac and Pauli form factors: F_1 , F_2

$$J^{\mu}_{hadronic} = e\overline{u}(p')[\gamma^{\mu}F_{1}(Q^{2}) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M}F_{2}(Q^{2})]u(p)$$
$$Q^{2} = -q^{2}$$

single photon exchange (Born approximation)

$$\frac{d\sigma}{d\Omega} = \sigma_{Mott} \frac{1}{1+\tau} \{F_1^2(Q^2) + \tau [F_2^2(Q^2) + 2(F_1(Q^2) + F_2(Q^2))^2 \tan^2 \frac{\theta_e}{2}]\}$$

Sachs Form Factors

• Linear combination of F_1 and F_2 , Fourier transform of the charge (magnetization) densities in the Breit frame at non relativistic limit.

$$\frac{d\sigma}{d\Omega} = \sigma_{Mott} \frac{1}{1+\tau} [G_E^2 + \frac{\tau}{\varepsilon} G_M^2]$$

Electric: $G_E \equiv F_1 - \tau F_2$
Magnetic: $G_M \equiv F_1 + F_2$

• Early experiments found ~ dipole form ($Q^2 < 2 \text{ GeV}^2$), naively corresponds to an exponential shape in space.

$$G_D(Q^2) = (1 + \frac{Q^2}{0.71 GeV^2})^{-2}$$

 $\mu_P \frac{G_E}{G_M} = 1$

Recoil Polarimetry

• Direct measurement of form factor ratios by measuring the ratio of the transferred polarization P_t and P_l .

$$I_0 P_t = -2\sqrt{\tau(1+\tau)}G_E G_M \tan\frac{\theta_e}{2}$$
$$I_0 P_l = \frac{E_e + E_{e'}}{M}\sqrt{\tau(1+\tau)}G_M^2 \tan^2\frac{\theta_e}{2}$$
$$\frac{G_E}{G_M} = -\frac{P_t}{P_l}\frac{(E_e + E_{e'})}{2M}\tan\frac{\theta_e}{2}$$

Advantages:

- Only one measurement is needed for each Q^2 .
- Much better precision than a cross section measurement.
- Complementary to XS measurements.
- Famous discrepancy between Rosenbluth and polarized measurement, mostly explained by $2-\gamma$ exchange.

(J. Arrington, et al., Phys. Rev. C 76 035205 (2007))

FFs at Low Q^2

• Small $Q^2 \rightarrow$ larger length scale, closely related to the proton size.

J. Friedrich and Th. Walcher, Eur. Phys. J. A 17, 607 (2003)

- 2003 Fit by Friedrich & Walcher Eur. Phys. J. A17, 607 (2003):
 - Smooth dipole form + "bump & dip"
 - All four FFs exhibit similar structure at small momentum transfer ($Q^2 \sim 0.25 \text{ GeV}^2$).
 - Proposed interpretation: effect of pion cloud.

• Improved EMFFs:

- Strange form factors through PV
- Proton Zemach radius and hydrogen hyperfine splitting
- Proton charge RMS radius.

$$\left\langle r_{E,M}^{2} \right\rangle = \frac{-6}{G_{E,M}(0)} \left[\frac{d}{dQ^{2}} G_{E,M}(Q^{2}) \right]_{Q^{2}=0}$$

World Data

• Complementary to the high precision XS measurement at Mainz ($Q^2 \sim 0.003$ – 1 GeV²).

- Bates **BLAST** result consistent with 1. Crawford et al., *Phys. Rev. Lett* 98 052301 (2007)
- Substantial deviation from unity is observed in **LEDEX** (Ron et al.).
- Both data inconsistent with F&W fit.
- New dedicated experiment **E08-007**.

Jefferson Lab Thomas Jefferson National Accelerator Facility

BigBite Spectrometer

- Detect scattered electrons.
- Only elastic-peak blocks were in the trigger.
- Background minimized with tight elastic cut.

Pre-shower

Elastic Events Selection

• HRS acceptance cut:

- out of plane: +/- 60 mr
- in plane: +/-30 mr
- momentum: +/- 0.04 (dp/p₀)
- reaction vertex cut

• FPP cuts:

- scattering angle $\theta_{\rm fpp}$ 5° ~ 25°
- reaction vertex (carbon door)
- conetest cut

• Other cuts:

- Coin. Timing cut
- Coin. event type (trigger)
- single track event
- dpkin (proton angle vs. momentum)

Focal Plane Polarimeter (FPP)

- Left-right asymmetry gives the vertical component while the updown asymmetry gives the horizontal component.
- Need well determined scattering azimuthal angle ϕ_{fpp} , chamber alignment checked with straight through data.

Focal Plane Asymmetry

 $\vec{Y} \otimes$

• Detection probability at focal plane with azimuthally angle $\phi_{\rm fpp}$

$$f^{\pm} = \frac{1}{2\pi} \xi [1 \pm A_y(\theta_{fpp})(P_x^{fpp} \sin(\phi_{fpp}) - P_y^{fpp} \cos(\phi_{fpp}))]$$

• Helicity difference:

$$f^{diff} = f^+ - f^- \approx \frac{1}{\pi} [A_y(P_x^{fpp} \sin(\phi_{fpp}) - P_y^{fpp} \cos(\phi_{fpp}))] = C\cos(\phi + \delta)$$

$$C = \frac{1}{\pi} A_y \sqrt{(P_x^{fpp})^2 + (P_y^{fpp})^2}$$
$$\tan \delta = \frac{P_y^{fpp}}{P_x^{fpp}}$$

• By dipole approximation:

 $R = \mu_{p} \frac{G_{E}}{G_{M}} \approx \sin \chi \frac{P_{x}^{fpp}}{P_{y}^{fpp}} \times K$

 $\otimes \vec{B}$

 $\vec{\mathbf{Y}} \otimes \mathbf{r} \neq \vec{\mathbf{z}}$

⁽K: kinematic factor)

Je

OThomas Jefferson National Accelerator Facility

Spin Transport in HRS (COSY)

Systematic Budget

• Spin transport: OPTICS and COSY---major uncertainty (0.7 ~ 1.2 %)

• Others negligible: FPP alignment, Al end cap contamination, VDC reconstruction, spectrometer settings, beam energy, charge asymmetry, pion contamination, etc.

E08-007 Final Results

• Agreement with independent analysis of Paolone *et al.* at 0.8 GeV².

- Slow decrease with Q^2 . A few percent below typical expectations.
- No obvious indication of "Structure", inconsistent with F&W fit.
- No obvious trend to rise quickly to unity at the lowest Q^2 point.

Comparison with Models

Results with World Polarization Data

- Combined global fits (John Arrington).
- AMT fit (black) : include all previous data with TPE correction.
- New fit (red) : same procedure, include new data.
- Preliminary fits suggest lower $G_{\rm E}$ (~2%).

ap

nomas Jefferson National Accelerator Facility

Impacts I

• Strangeness form factor by PV: asymmetry arises from the interference between EM and neutral weak current.

$$\sigma \propto |\mathcal{M}_{\gamma} + \mathcal{M}_{Z}|^{2}$$
$$\mathcal{M}^{R} = \mathcal{M}_{\gamma} + \mathcal{M}^{R}_{Z},$$
$$\mathcal{M}^{L} = \mathcal{M}_{\gamma} + \mathcal{M}^{L}_{Z}.$$

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \frac{\left|\mathcal{M}^R\right|^2 - \left|\mathcal{M}^L\right|^2}{\left|\mathcal{M}^R\right|^2 + \left|\mathcal{M}^L\right|^2}$$

- Rely on knowledge of EMFFs.
- With New FF parameterization, HAPPEX III results shift $\sim 0.5\sigma$

$$A_{PV} = -\frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \Big[(1 - 4\sin^2\theta_W) - \frac{\varepsilon G_{Ep}(G_{En} + G_{Es}) + \tau G_{Mp}(G_{Mn} + G_{Ms})}{\varepsilon (G_{Ep})^2 + \tau (G_{Mp})^2} - \frac{(1 - 4\sin^2\theta_W)\varepsilon' G_{Mp}G_A^Z}{\varepsilon (G_{Ep})^2 + \tau (G_{Mp})^2} \Big]$$

Q ²	ΔΑ	ΔΑ/σ	ΔΑ/Α	Exp.
0.38	-0.178	0.42	1.6%	G0 FWD
0.56	-0.347	0.50	1.6%	G0 FWD
1.0	-0.414	0.30	0.8%	G0 FWD
0.50	-0.299	0.50	1.7%	HAPPEX III
0.231	+0.038	0.12	0.2%	G0 BCK
0.65	0.142	0.14	0.3%	GO BCK

Table: Difference in the extracted asymmetries.

Impacts II

• Proton Zemach radius:

$$E_{hfs} = (1 + \Delta_{QED} + \Delta^{p}_{hvp} + \Delta^{p}_{\mu vp} + \Delta^{p}_{weak} + \Delta_{S})E^{p}_{F}$$

$$\Delta_{S} = \underline{\Delta}_{Z} + \Delta_{R}^{p} + \Delta_{pol}, \quad \Delta_{Z} = -2\alpha Z \frac{m_{e}m_{p}}{m_{e} + m_{p}} r_{Z}$$
$$r_{Z} = -\frac{4}{\pi} \int_{0}^{\infty} \frac{dQ}{Q^{2}} [G_{E}(Q^{2})G_{M}(Q^{2})/(1 + \kappa_{p}) - 1]$$

• FFs at Low Q^2 (<1 GeV²) accounts for >70% of r_Z , and also dominate the uncertainty.

Quantity	value (ppm)	uncertainty (ppm)	
$(E_{\rm hfs}(e^-p)/E_F^p) - 1$	$1\ 103.48$	0.01	
$\Delta_{ m QED}$	$1 \ 136.19$	0.00	
$\Delta^p_{\mu \rm vp} + \Delta^p_{\rm hvp} + \Delta^p_{\rm weak}$	0.14		
Δ_Z (using [31])	-41.43	0.44	
Δ^p_R (using [31])	5.85	0.07	
$\Delta_{ m pol}$ (this work, using [31])	1.88	0.64	
Total	1102.63	0.78	
Deficit	0.85	0.78	

Carlson, Nazaryan, and Griffioen, arXiv:0805.2603v1 (2009)

FFs	r _z (fm)	Δz	year
Dipole	1.025	-39.29	-
FW	1.049	-40.22	2003
Kelly	1.069	-40.99	2004
AS	1.091	-41.85	2007
AMT	1.080	-41.43	2007
New fit	1.075	-41.21	2009

Jefferson Lab Thomas Jefferson National Accelerator Facility

Future Outlook

- E08007 analysis finalized.
- Publication in preparation.
- Updated paper for LEDEX (G. Ron *et al.*) in preparation.

• Second half of the experiment (DSA) is tentatively scheduled in early 2012

$$\mathsf{A}_{\mathsf{phys}} = \frac{\mathsf{v}_{z} \mathbf{cos}\theta' \mathsf{G}_{\mathsf{M}}^{2} + \mathsf{v}_{x} \mathbf{sin}\theta' \mathbf{cos}\varphi' \mathsf{G}_{\mathsf{E}}\mathsf{G}_{\mathsf{M}}}{\left(\varepsilon \mathsf{G}_{\mathsf{Ep}}^{2} + \tau \mathsf{G}_{\mathsf{Mp}}^{2}\right) / \left[\varepsilon (1+\tau)\right]}$$

- Opportunity to see the FFR behavior at even lower Q^2 (0.015-0.4 GeV²) region.
- Third independent measurement, direct comparison with **BLAST**, examine any unknown systematic errors for previous measurements.
- Challenges: Solid polarized proton target & effect of target field to septum magnets.

Summary

• Nucleon FFs are fundamental quantities describing the nucleon internal structure, and has been a longstanding subject of interest in nuclear and particle physics.

• pQCD not applicable at low momentum transfer region, precision FF measurements are needed for all the experimental accessible region to test various models.

• A new high precision measurement was conducted in Jefferson Lab Hall A at low Q^2 , new results strongly deviate from unity, systematically lower than previous world data.

• While adding further constraints on various models, high precision data also have impacts to other physics quantities: proton Zemach radius, strange form factor through PV, etc.

• Future experiments accessing extremely lower Q^2 are necessary, more "unexpected" results? ...

Acknowledgements

J. Arrington, D. Higinbotham, J. Glister, R. Gilman, S. Gilad, E. Piasetzky, M. Paolone, G. Ron, A. Sarty, S. Strauch and the entire E08-007 collaboration & Jefferson Lab Hall A Collaboration

E08-007 Collaboration

- Argonne National lab
- Jefferson Lab
- Rutgers University
- St. Mary's University
- Tel Aviv University
- UVa
- CEN Saclay
- Christopher Newport University
- College of William & Mary
- Duke University
- Florida International University
- Institut de Physique Nuclaire d'Orsay
- Kent State University
- MIT
- Norfolk State University

- Nuclear Research Center Negev
- Old Dominion University
- Pacific Northwest National Lab
- Randolph-Macon College
- Seoul National University
- Temple University
- Universite Blaise Pascal
- University of Glasgow
- University of Maryland
- University of New Hampshire
- University of Regina
- University of South Carolina

Thank you!

Back up slides

Jefferson Lab

MENU2010

COSY Spin Precession Matrix

- Different SP matrix were generated by changing the default settings in COSY:
 - dipole radius, drift distances, quadrupoles alignment
 - central bending angle: 5.5 mrad
 - use COSY transport map to reconstruct target variables

- Uncertainties on target variables (OPTICS):
 - dp: 0.001
 - y_tg: 0.001 m
 - ph_tg: 0.7~1.2 mrad
 - th_tg: 1 mrad

Argonne

Individual Form Factors

• With the extract ratio constraint, refit the world reduced cross section data.

Extraction of Polarization

- Full spin precession by COSY:
 - differential algebra-based.
 - defines the geometry and related setup of magnets.

$$S_{ij} = \sum_{k,l,m,n,p} C_{ij}^{klmnp} \boldsymbol{x}^{k} \theta^{l} \boldsymbol{y}^{m} \phi^{n} \delta^{p}$$

 $\begin{pmatrix} P_x^{fpp} \\ P_y^{fpp} \end{pmatrix} = \begin{pmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \end{pmatrix} \begin{pmatrix} P_x^{tg} \\ \eta h P_y^{tg} \\ \eta h P_y^{tg} \end{pmatrix}$

target frame

 $\lambda_z = \eta A_u (S_{uz} \sin \phi - S_{xz} \cos \phi).$

- Weighted-sum: $f(\phi) = \frac{1}{2\pi} \epsilon (1 + \lambda_x P_x^{tg} + \lambda_y h P_y^{tg} + \lambda_z h P_z^{tg}), \qquad \lambda_x = A_y (S_{yx} \sin \phi - S_{xx} \cos \phi)$ $\lambda_y = \eta A_y (S_{yy} \sin \phi - S_{xy} \cos \phi)$
 - efficiency cancels with different beam helicity

$$\int_{0}^{2\pi} f(\phi)\lambda_{y}d\phi = hP_{y}^{tg}\int_{0}^{2\pi} f(\phi)\lambda_{y}^{2}d\phi + hP_{z}^{tg}\int_{0}^{2\pi} f(\phi)\lambda_{y}\lambda_{z}d\phi + \int_{0}^{2\pi} f(\phi)\lambda_{z}d\phi = hP_{y}^{tg}\int_{0}^{2\pi} f(\phi)\lambda_{y}\lambda_{z}d\phi + hP_{z}^{tg}\int_{0}^{2\pi} f(\phi)\lambda_{z}^{2}d\phi.$$

Impacts III

• Isoscalar & Isovector FFs (important for Lattice QCD):

$$F_i^s = \frac{1}{2}(F_i^p + F_i^n), F_i^v = \frac{1}{2}(F_i^p - F_i^n)$$

• Plots show fractional change in IS and IV FFs by using the new parameterization vs. the old parameterization.

